	Concept exploration phase	Concept validations phase	Design development phase	Construction/ installation phase	Operation and support phase
Objective	 o Evaluate design alternatives o Establish protection requirements 	o Validate selected approach	o Validate selected approach/ designs	 Quality assurance Hardness assess- ment and verifi- cation test Product acceptance 	o Hardness surveillance
Analysis/ test approaches	Laboratory tests: o SE/leakage o Large loop o Helmholtz coil o Parallel plate o Radiated fields o Strip line o Small loop o Radiated fields o Strip line o Cables o Triaxial o Quadraxial o Coaxial o Susceptibility o Current injection o Scale modeling	Prototype labora- tory tests: o SE/leakage o large loop o Helmoltz coil o Parallel plate o Radiated fields o Strip line o Small loop o Radiated fields o Strip line o Cables o Triaxial o Quadraxial o Coaxial o Susceptibility o Current injection o Scale modeling	Laboratory tests: o SE/leakage (as before) o Protection element design o Direct injection	QA/acceptance tests: o Shield fabrication o Seam sniffer o Visual inspec- tion o Small loop o Radiated o High/low impedance o Aperture treat- ment o Radiated o Strip line o Penetrations o Shield tech. o Current injection o TPDs o Current injection Verification tests: o EMP large volume simulators o CW radiated o Parallel plate o Current injection	SE: o Seam sniffer o Built-in Helmholtz coils o CW illuminators o Built-in local current sources Cables: o Current injection o Built-in sense drive wires TPD: o Current injection o Ground bond tests

FP 1110-3-2 31 Oec YO

6-37

1.

Table 6-2. Summary of existing bounded-wave simulators

Name*	Location	Wave- form	Polar- ization	Magnitude	Interaction volume	Status
ALECS	Kirtland AFB, NM	Exo**	V	50 kV/m	30x30x10 m	Operational
ARES	Kirtland AFB, NM	Exo	v	70 kV/m	40x30x20 m	Operational
TRESTLE	Kirtland AFB, NM	Exo	v	50 kV/m	80x80x75 m	Operational
TEFS	WSMR, NM	Exo	V,H	65 kV/m	40x40x10 m	Operational
TEFS	NSWC/WOL, MD	Exo	V,H	50 kV/m	Modular	Operational

*ALECS = AFWL/LASL Electromagnetic Calibration and Simulation Facility; ARES = Advanced Research EMP Simulator; TEFS = Transportable Electromagnetic Field Simulator.

**HEMP double exponential.

6-38

ž.,

Name*	Location	Wave- form	bol**	Direct wave magnitude/distance	Interaction area ("P1. wave)	Angle of arrival	Status
RES I	Portable, Kirtland APB, NM	Exo***	H	1000 V/m @ 500 m	100 m	Any	Deactivated
RES II	Portable, Kirtland APB, NM	Exo	V	1000 V/m 🖲 500 m	100 m	Any	Deactivated
VPD	Kirtland AFB, NM	Exo	V	3 kV/m 0 200 m	Area directly below antenna (non-planar)	Grazing	Operational
HPD	Kirtland AFB, NM	Exo	Н	50 kV/m 0 9 m HAC*	ditto	normal	Operational
HDL Biconic	HDL, Woodbridge, VA	Exo	H	15 kV/m € 100 m	-200 m	10° € 200 m	Operational
ABSOP	HDL, Woodbridge, VA	Exo	H	50 kV/m 🖲 50 m	°200 ∎	10° 🖨 200 m	Operational
VEMPS	HDL Woodbridge, VA	Exo	V	5 kV/n 🖲 25 n (0.25 MV pulser)	~100 m	Grazing	Operational
EMPRESS	NSWC Solomons, MD	Exo	H	2.2 kV/n ● 300 m (16 m HAG)	-300 m	8° 🖲 300 m.	Operational
EMPRESS	NSWC Solomons, MD	Sur- face	V	4 kV/m ● 300 m	-300 m	Grazing	Operational
EMPSAC	NSWC/NATC Patuxent, MD	Exo	H	8.5 kV/n 0 50 m	~25-50 m	17° 0 50 m	Operational
NAVES	NSWC/NATC Patuxent, MD	Бхо	V	11 kV/m @ 50 m	25-50 m	Grazing	In construction
TEMPS	DNA, transport- able	Exo	H	50 kV/m € 50 m 12.5 kV/m € 200 m	200 🖬	10° @ 200 m	Operational

Table	6-3.	Summary	of	radiating	wave	simulators

*RES I & II = Radiating Blectromagnetic Simulators; VPD = vertically polarized dipole; HDL = Harry Diamond Laboratories; AESOP - Army Blectromagnetic Simulator Operations Pacility; VEMPS = Vertical Electromagnetic Simulator; BMPRESS = Electromagnetic Pulse Radiation Environment Simulator for Ships; EMPSAC = EMP Simulator for Aircraft; NAVES = Navy EM Simulator; TEMPS = transportable EMP simulator. **POL = polarization
***Exo = HEMP double exponential.

+Directly below antenna.

Table 6-4. Scaling relationships

Model size	$D_{s} = \frac{D_{a}}{M}$
Frequency	w _s = Mw _a
Conductivity	$c_{g} = Mc_{a}$
Permittivity	$p_s = p_a$
Permeability	$u_{g} = u_{a}$
Propagation loss	a _s = Ma _a
Propagation phase	$B_{g} = MB_{a}$

Fixture type	Environ- ment	Injec- tion method	Fixture termina- tion	Cable	Verifi- cation	Assurance	Surveil- lance	Nainte- nance	Response measure- ment (A)	Excitation measure- ment (B)	Measure of shielding effectiveness
Quadraxial (trough): Four concentric conduc- tors with cable conduc- tors and shield forming innermost pair. Direct current injection into No. 3. Conductor with return divided between cable shield and outer conductor.	CW	Direct, cable shield external return	Matched	Optional	X	X			Core current and/or voltage	Shield current	A/B
Triaxial: Three concentric conduc- tors with cable conduc- tor and shield forming innermost pair. Cable and/or connector shield are common to both inner and outer coaxial chamber One chamber is connected to the generator, the other to the receiver. Other chamber may be driven. Receiver may be at generator end, or at opposite end.	Pulse CV	Direct, cable shield, external or internal return	Matched	Optional or short	X	X			Core current and/or voltage	Shield current	A/B
Coaxial: Two concentric conduc- tors, formed by cable conductors and shield. Driven between shield and conductors. Measure external field (sniffer)	CW.	Direct internal return	N/A	Short	X	X	X	X	External field	Core current or voltage	A/B
System Level: Environment applied to shielding system either as a radiated field or as a current density on the outer shield en- closure. Measure response at several points inside system. Additional tests are reguired to isolate points of entry.	Pulse CV	Direct or radiated exposure of system enclosure	N/A	Open and short			X		Core current and voltage	Shield current or field	A/B

_ ...

- - ---

Table 6-5. Summary of quality assurance test methods (source: ref 6-4)

6-41

C-S-0111 AB

Parameter	Test categories												
in document	Magnetic field					tric field		Plane wave (ultrahigh frequency)			Plane wave (microwave)		
	IEEE 299	IEEE 299	MIL-STD -285	NSA 65-6*	IEEE 299	MIL-STD -285	NSA 65-6*	IEEE 299	MIL-STD -285	NSA 65-6*	IEEE 299	MIL-STD -285	
Test fre- quency or fre- quency range	100 Hz to 200 KHz	100 Hz to 20 MHz	150 KHz to 200 KHz	1 KHz, 10 KHz, 100 KHż 1 N Hz	- &	200 KHz, 1 MHz, & 18 MHz	1 KHz, 10 KHz, 100 KHz, 1 MHz & 10 MHz	300 MHz to 1 GHz	400 MHz	100 MHz, 400 MHz & 1 GHz	1.7 GH to 12.4 (1.7 GHz - to 12.4 GHz	
Test Nethod	Large Loop	Sma11 Loop	Loop test (low im- pedance magnetic field)	Loop test	-	Rod radiator test (higt impedance electric field)	Monopole test (electric field)	Dipole test (ultrahigh frequency)	Dipole test (attenua- tion test for plane waves)	Tuned hori- izontal dipole test (plane wave)	Microwave - test		
Primary compo- nents tested	Shielded enclosures	Shielded enclosure plus doors, welds, and electrical & air duct filter enclosures	Shielded enclosure	Shielde enclosu	d - re	Shielded enclosure	Shielded enclosure	Shielded enclosure	Shielded enclosure	Shielded enclosure	Shielded - enclosure		
Secondary compo- nents tested	Doors, welds and electri- cal filter and air duct filter enclo- sures	Welds -	**	**	-	**	**	Door seams, electrical and air duct filter panels, air-vent areas, panel seams, & coaxial cable fittings	**		Door seams elect and a duct panel air-v areas panel seams coaxi cable fitti	- rical filter s, ent , al ngs	

Table 6-6. Comparison summary of shielding effectiveness test methods (source: ref 6-9)

*All power line filters shall be tested for voltage drop (not to exceed 1%) under full load. They must be operated under full load for ten hours before testing. The increase in temperature of the outer case during this period must not exceed 25°C above the ambient temperature of the room.
 **Test method does not contain preliminary procedures for checking enclosure components for leaks which are to be repaired before conducting primary test.

6-42

-

M

Figure 6-1. Bounded wave simulators.

.....

AESOP SPAN ON EMP COVERAGE

Figure 6-2. Pulsed radiated wave simulators. (sheet 1 of 2)

Figure 6-2. Pulsed radiated wave simulators. (sheet 2 of 2)

Figure 6-4. Direct current injection testing.

¥.

Figure 6-5. Inductive current injection testing.

Figure 6-7. Transfer impedance/admittance test setup.

QUADRAXIAL TROUGH

TRIAXIAL ASSEMBLY

Figure 6-8. Alternative demonstration and test methods.

Figure 6-9. Response characteristic measurement.

- 15

Figure 6-10. Standard circuit for measuring S parameters.

......

EP 111(--3-2 31 Dec 90

Figure 6-12. HEMP stress test. (Source: ref 6-4)

\$

Figure 6-13. TPD power attenuation test. (Source: ref 6-4)

Figure 6-14. Alternative power attenuation test using simulated subsystem impedance. (Source: ref 6-4)

Figure 6-15. Static breakdown voltage measurement. (Source: ref 6-4)

Figure 6-16. Small-loop-to-small-loop test setup. (Source: ref 6-4)

6-59

2-2-0111 da

3

6-61

C, , C2, C3 ARE SHIELDED TRANSMISSION LINE CABLES KEPT SHORT AS POSSIBLE AND USED ONLY IF NECESSARY.

d IS THE SHIELD THICKNESS.

6-63

EP 1110-3-2 31 Dec 90

1.4

- d = shield thickness
- P_i = position of transmitting antenna (2 m minimum). This distance shall be as great as possible, limited only by the power of the source.
- P₂ = receiving antenna placed such that a maximum indication of the detector is obtained (5cm minimum).

Figure 6-21. Attenuation test for plane waves (wave impedance = 377 ohms). (Source: ref 6-4)

- $\overline{4}$) Wave launcher, 1/16 in. copper on 1/2 in: plexiglass (~log curve).
- 5) Test enclosure.

Figure 6-22. Parallel plate line. (Source: ref 6-4)

