Figure 5-5. Nomograph (Source: for ref determining electric 5-3) field reflection loss.

Figure 5-6. Nomograph for determining plane wave reflection loss. (Source: ref 5-3)

Figure 5-7. Chart for computing K for magnetic field secondary reflection loss. (Source: ref 5-3)

5 A = 5.0 dB • 6.0 dB 0 ŦŦŦ A-4.0 dB П A = 3.0 dB A=2.04B - 5 A =1.5 dB REFLECTION LOSS B. 4B A-1.0 dB -10 A =0.8 dB A=0.6dB -15 A= 0.4 dB -20 A=0.2 dB -25 -30 10-3 10-2 10-4 10-1 I IMPEDANCE $K_{\omega} = Z_s / Z_{\omega}$

EP 1110-3-2 31 Dec 90 ļ

Figure 5-8. Chart for computing secondary losses for magnetic fields. (Source: ref 5-3)

Figure 5-9. Absorption loss for steel and copper shields at 30 hertz to 10,000 megahertz. (Source: ref 5-3)

Figure 5-10. Absorption loss for copper and iron, in decibels per mil. (Source: ref 5-3)

Figure 5-11. Shielding effectiveness in electric, magnetic, and plane wave fields of copper shields (7 mils thick) for signal source 165 feet from the shield. (Source: ref 5-3)

Figure 5-12. Shielding effectiveness in electric, magnetic, and plane wave fields of steel shield (1 mil thick) for signal sources 165 feet from the shield. (Source: ref 5-3)

Figure 5-13. Shielding effectiveness in electric, magnetic, and plane wave fields of steel shield (50 mils thick) for signal sources 165 feet from the shield. (Source: ref 5-3)

,

5-110

FREQUENCY

F-111

5-111

1110-3-2 31 Dec 90

Figure 5-16. Mean shielding effectiveness for all test points for the June 1980 test. (Source: ref 5-29)

This page not used.

Figure 5-18. Aperture shielding. (sheet 1 of 2)

Figure 5-18. Aperture shielding. (sheet 2 of 2)

1

This page not used.

This page not used.

ĺ

This page not used.

1

Figure 5-22. Attenuation--rectangular waveguide. (Source: ref 5-3)

ļ

Figure 5-23. Attenuation--circular waveguide. (Source: ref 5-3)

*

i. b

Figure 5-24. Air impedance of perforated metal and honeycomb. (Source: ref 5-3)

EP 1110-3-2 31 Dec 90

¢Å,

This page not used.

> .) [

5 METERS 120 9 - J = 40 METERS J = 20 METERS <u>8</u> J = 10 METERS 8 90 J=7.5 METERS 8 ۳) د (m) BAR SPACING ON 3.3 CENTIMETER CENTERS BAR DIAMETER = A.3 CENTIMETERS С 20 ę ÔE 80 0 8 975 513 รูร, 27 5 * õ (8b) NOITAUNETTA

Figure 5-27. Center area attenuation of 5-meter-high, single-course reinforcing steel room. (Source: ref 5-7)

5-125

с Т 31 Dec 1110-3-2 31 Dec 90

Figure 5-29. Correction curves for various rebar diameters and spacings using single-course rebar construction. (Source: ref 5-7)

DISTANCE FROM IMNER WALL OF SHIELDED ROOM (cm)

EP 1110-3-2 31 Dec 90

WELD AT CROSSOVER (can be tied in addition)

ENDS CAN BE EXTENDED AND TIED OR CLAMPED FOR MECHANICAL STRENGTH

WELD OVER AT LEAST & TO S DIAMETERS FOR ELECTRICAL CONTINUITY

Figure 5-32. Reinforcement steel welding practice. (Source: ref 5-7)

Figure 5-33. Schematic presentation--reinforcement steel shield. (Source: ref 5-7)

. in ...

Figure 5-34. Weld joints for sheet steel shields. (Source: ref 5-7)

Figure 5-35. Bolted joints for metallic shields. (Source: ref 5-7)

Figure 5-36. Shielding effectiveness for bolted joints. (Source: ref 5-7)

Figure 5-37. Influence of screw spacing on shielding effectiveness. (Source: ref 5-6)

		-w-					
Deflection	W Diam	Deflection	<u>H</u> . 34	Deflection	Ţ	Deflection	<u>A</u>
.007018	.070	.006012	.068	.001002	.020	.025080	.200
.010026	.103	.008016	.089	.001003	.032	.030125	.250
.013031	. 125	.012024	.131	.003006	.062	.075250	.360
.014035	.139	.014029	.156	.003009	.093		
		.016032	.175	· · · · · · · · · · · · · · · · · · ·	a di serie d Serie di serie		

Figure 5-38. Gasket deflection limits (in inches). (Source: ref 5-30)

5-136

NOTE: VIEW PURPOSELY EXAGGERATED TO DEMONSTRATE IMPERFECT SEAL CONDITIONS.

Figure 5-40. Improper gasket application. (Source: ref 5-3)

μĘ

1110-3-3 Dec 90

N.

1997 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -

NOT TO SCALE

- Surfaces with Tin Coating or Plating
- 2 = Bolts or Screws to Affix Retainer Plate
- (3) = Silicone, Hollow Extruded Elastomer
- (4) * Aluminum Extrusion Welded to Door

- 5 Tin-Plated Spiral "OVAL" Gasket
- 6 = Tin-Plated Aluminum Extrusion Gasket Retainer
- (7) = Aluminum Extrusion Welded to Shelter

Figure 5-42. EMI shielded door seam ("oval" spiral gasket). (Source: ref 5-8)

NOT TO SCALE

- (1) * Surfaces with Tin Coating or Plating
- 2 = Bolts or Screws to Affix Retainer Plates
- (3) = Silicone, Hollow Extrusion Elastomer
- (4) = Aluminum Extrusion Welded to Door

- (5) = Tin-Plated Aluminum Retainer Plates
- 6 = Aluminum Extrusion Bolted to Shelter (Removable)
- (7) = Aluminum Extrusion Welded to Shelter

Figure 5-43. EMI shielded door seam (fingerstock). (Source: ref 5-8)

đ.

¥.

1.446

and the second

.

Figure 5-46. Cable shielding effectiveness with number of braid layers. (Source: ref 5-7)

angel i st

- test

5-144

and an additional databased

à.

Induction Loop Η

Radial Magnetic Field

Figure 5-49. Induction loop area for twisted pair cables. (Source: ref 5-16)

- 19 A. 19 A.

÷.

- (3) RF CONNECTOR, UNBALANCED
- (4) RF CONNECTOR, BALANCED
- (5) NORMALIZED DIFFERENTIAL CURRENT (no shield termination)
 - (b) NORMALIZED CURRENT I2 (curve 5 shows the normalized differential current i_2 i'_2)

Figure 5-50. Experiments with shielded twisted pair cabling. (Source: ref 5-14)

EP 1110-3-2

31 Dec 90

 $\{ I_{i} \}_{i \in \mathbb{N}}$

MALE SMA

.

FEMALE SMA

GAP RANGE MATED SMA PAIR

Figure 5-51. Construction of some popular coaxial connectors. (Source: ref 5-16)

Pressure (psi)

Figure 5-52. Contact resistance of conductive coatings on aluminum. (Source: ref 5-16)

 \mathbf{S}^{T}

Figure 5-53. Shielding effectiveness of connectors with various finishes. (Source: ref 5-16)

Figure 5-54. Effect of tightening torque on shielding effectiveness during vibration. (Source: ref 5-16)

11 (a^r)

S. Carlos - Contraction - C

Figure 5-55. Effect of added spring fingers on shielding effectiveness. (Source: ref 5-16)