Table 5-1. Coefficients for magnetic field reflection loss*

Coefficient		Units for di	stance (r)	
	Meters	Millimeters	Inches	Mils
c ₁	0.0117	11.7000	0.462	462
c ₂	5.350	0.0053	0.136	136
*Source: H. W. Denny, Procedures for Electro	et al., <u>Groundi</u> onic Equipments	ng, Bondíng, a and Facilities	nd Shieldin , Vol I-II,	g Practices and Fundamental

Considerations, Report No. FAA-RD-75-215, I (Engineering Experiment Station, Georgia Institute of Technology, December 1975).

Table 5-2. Absorption loss of metals at 150 kilohertz*

	. <u> </u>	Relative	
Metal	Relative conductivity, ^g r	permeability at 150 kHz, ^µ ^{**} r	Absorption loss at 150 kHz, dB/mil
Silver	1.05	1	1.32
Copper, annealed	1.00	1	1.29
Copper. hard-drawn	0.97	1	1.26
Gold	0.70	1	1.08
Aluminum	0,61	1	1.01
Magnesium	0.38	1	0.79
Zinc	0.29	1	0.70
Brass	0.26	1	0.66
Cadmium	0.23	1	0.62
Nickel	0.20	1	0.58
Phosphor-bronze	0.18	1	0.55
Iron	0.17	1000	16.9
Tin	0.15	1	0.50
Steel, SAW 1045	0.10	1000	12.9
Beryllium	0.10	1	0.41
Lead	0.08	1	0.36
Hypernick	0.06	80,000	88.5***
Monel	0.04	1	0.26
Nu-Metal	0.03	80,000	63.2***
Permalloy	0.03	80,000	63.2***
Stainless steel	0.02	1000	5.7

*Source: Engineering Design Handbook--Electromagnetic Compatibility, DARCOM-P-706-410 (U.S. Army Materiel Command, March 1977).

**The relative permeability of metals changes somewhat with frequency, but becomes decreasingly important at higher frequencies.

***Obtainable only if the incident field does not saturate the metal.

Frequency	Cop	per	Alumin	านก	Ire	on		Absorption db/mil	loss,
	^g r	μr	^g r	μr	g _r	μ ** r	Copper	Aluminum	Iron
60 Hz	1	1	0.61	1	0.17	1000	0,03	0.02	0.33
1000 Hz	1	1	0.61	1	0.17	1000	0.11	0.08	1.37
10 kHz	1	1	0.61	1	0.17	1000	0.33	0.26	4.35
150 kHz	1	1	0.61	1	0.17	1000	1.29	1.0	16.9
1 MHz	1	1	0.61	1	0.17	700	3.34	2.6	36.3
15 MHz	1	1	0.61	1	0.17	400	12.9	10.0	106.0
100 MHz	1	1	0.61	1	0.17	100	33.4	26.0	137.0
1500 MHz	1	1	0.61	I	0.17	10	129.0	100.0	168.0
.000 MHz	1	1	0.61	1	0.17	1	334.0	260.0	137.0

Table 5-3.	Absorption loss of solid copper, alum:	inum,	and	iron	shields
	at 60 hertz to 10,000 megahertz*				

*Source: Engineering Design Handbook--Electromagnetic Compatibility, DARCOM-P

706-410 (U.S. Army Materiel Command, March 1977).

**Other values of µ for iron are: 3 megahertz, 600; 10 megahertz, 508; 1000 megahertz, 50.

		Ele	ctric field, db**		Magnetic field, Plane wave, dB** dB***,+					
Frequenc	; y	Copper	Aluminum	Iron	Copper	Aluminum	Iron	Copper	Aluminum	Iron
60 H	iz	279		241	22		-1	150	148	113
1000 H	Iz	242		204	34		10	138	136	100
10 k	kHz	212		174	44		8	128	126	90
150 k	cHz.	177	175		56	54	19	117	114	79
1 1	4Hz	152	150	116	64	62	28	108	106	72
15 M	Hz	117	115	83	76	74	42	96	94	63
100 M	4Hz	92	90	64	84	82	56	88	86	60
1500 M	4Hz	**		++	++		++	76	74	57
10,000 1	MHz	++		++	++		++	68	66	60

*Source: Engineering Design Handbook--Electromagnetic Compatibility, DARCOM-P 706-410 (U.S. Army Materiel Command, March 1977).

**For signal source 12 inches from shield. Wave impedance much greater than 377 ohms. (For distances much greater

smaller than 12 inches, recalculate the reflection loss using the formulas given in text.)
***If penetration loss is less than 10 decibels total, reflection loss must be corrected by use of B-factor.
*Signal source greater than 2 from the shield.
**At these frequencies, the fields approach plane waves with an impedance of 377 ohms .

Table 5-5. Shield effectiveness in magnetic field (wave impedance much smaller than 377 ohms) of solid copper, aluminum, and iron shields for signal source 12 inches from the shield at 150 kilohertz to 100 megahertz*

Frequency.	Co	ppe	r (10	mi	ls)	A1	umi	num	(10	0 mils)	Iro	n (10 π	nils	3)
MHz	A (dB)	+	R (dB)	=	SE (dB)	A (dB)	+ (R dB)	=	SE (dB)	A (dB)	+ (R dB)	Ξ	SE (dB)
0.15	13	+	56	Ξ	69	10	+	54	=	64	169	+	19	=	188
1.0	33	+	64	=	97	26	+	62	=	88	363	+	28	=	391
15	129	+	76	=	205	100	+	74	=	174	1060	+	42	₹	1102
100	334	+	84	=	418	260	+	82	=	342	1370	+	56	=	1426

706-410 (U.S. Army Materiel Command, March 1977).

Table 5-6. Shielding effectiveness in plane wave field (wave impedance equal to 377 ohms) of solid copper and iron shields for signal sources greater than 2 inches from the shield at 150 kilohertz to 100 megahertz*

Frequency,	Сор	per	(10 mi	1s)		Ir	on	(10 mil	.s)	
MHz	A (dB)	+	R (dB)	T	SE (dB)	A (dB)	+	R (dB)	=	SE (dB)
0.15	13	+	117	=	130	169	+	79	=	248
1.0	33	+	108	=	141	363	+	72	=	435
15.0	129	+	96	=	125	1060	+	63	=	1123
100.0	334	+	88	=	422	1370	+	60	Ξ	1430

Source: Engineering Design Handbook--Electromagnetic Compatibility, DARCOM-P 706-410 (U.S. Army Materiel Command, March 1977). Table 5-7. Shielding effectiveness in electric field (wave impedance much greater than 377 ohms) of solid copper, aluminum, and iron shields for signal source 12 inches from the shield at 0.15 megahertz to 100 megahertz

Frequency,	Сор	per	(10 m	ils)	Alu	ninu	um (10	mi	ls)	Iro	n (10 mi	1s)	
MHz	A (dB)	+	R (dB)	=	SE (dB)	A (dB)	+	R (dB)	=	SE (dB)	A (dB)	+	R (dB)	=	SE (dB)
0.15	13	+	176	=	189	10	+	175	=	185	169	+	139	=	308
1.0	33	+	152	=	185	26	+	150	=	176	363	+	116	=	479
15.0	129	+	116	=	245	100	+	115	=	215	1060	+	83	=	1143
100.0	334	+	92	=	426	260	+	90	=	350	1370	+	64	Ξ	1434
*Source: Eng	ineering	De	sign H	and	bookE	lectrom	agne	etic Co	omp	atibilit	y, DARCO	M-P)		

5-75

Shield 10 kHz 100 kHz 1 MHz thickness 60 Hz 100 Hz l kHz (mils) Copper, $\mu = 1$, g = 1, magnetic fields -24.31 -28.23 - 9.61 -10.34 -2.6 1 -22.22 5 -21.30 -22.07 -15.83 - 6.98 - 0.55 +0.14 - 2.62 + 0.57 0 -18.59 -10.37 10 -19.23 - 5.41 + 0.13 - 0.10 --15.35 -13.77 20 _ - 2.94 + 0.58 -12.55 0 30 -10.76 -50 - 8.88 - 7.07 - 0.58 0 _ - 4.24 - 2.74 + 0.50 -_ _ 100 + 0.05 - 0.76 -200 0 + 0.32 + 0.53 300 Copper, $\mu = 1$, g = 1, electric fields and plane waves -29.38 -19.61 -10.33 -2.61 -41.52 -39.31 1 +0.14 -15.82 - 6.96 - 0.55 5 -27.64 -25.46 -21.75 -19.61 -10.33 - 2.61 + 0.57 0 10 - 5.37 + 0.14 - 0.10 20 -15.99 -13.92 -10.73 - 2.90 + 0.58 0 _ -12.73 30 _ + 0.14- 8.81 - 6.96 - 0.55 -50 + 0.51 0 _ - 4.08 - 2.61 100 200 - 0.62 + 0.140 --+ 0.58 300 + 0.41 Iron, $\mu = 100$, g = 0.17, magnetic fields - 1.60 - 1.83 + 0.95 + 1.23 1 + 0.89 - 0.59 0 -5 + 0.93 10 + 0.78 + 0.48 + 0.06 -0 --+ 0.35 + 0.08 20 -30 + 0.06 - 0.06 ----_ 50 0 0

Table 5-8. Re-reflection (B)-factors in electric, magnetic, and plane wave fields of solid copper and iron shields* (sheet 2 of 2)

Shield thickness (mils)	60 Hz	100 Hz	l kHz	10 kHz	100 kHz	l MHz
Iron, µ	= 1000, g = 0.	17, electric	: fields and	plane waves		
1	-19.53	-17.41	- 8.35	- 1.31	-	_
5	- 6.90	- 5.17	+ 0.20	0	-	-
10	- 2.56	- 1.31	+ 0.36	-	-	-
20	+ 0.16	+ 0.54	0	-	-	-
30	+ 0.58	+ 0.42	-	-	-	-
50	+ 0.13	0	-	-	-	-
*Source:	Engineering De	sign Handboo	okElectroma	ignetic Compa	tibility, DA	RCOM-P
706-410	(U.S. Army Mate	riel Command	i, March 1977	').		

Table 5-9. Shielding effectiveness in electric, magnetic, and plane wave fields of copper shield (7 mils thick) for signal source 165 feet from the shield at 30 hertz to 10 gigahertz*

Frequ	lency	Plane wave,	Electric field,	Magnetic field,	
•	·	dB	dB	dB	
30	Hz	122	213	32	
60	Hz	122	207	39	
100	Hz	122	202	42	
500	Hz	123	189	57	
1	kHz	123	183	63	
10	kHz	123	163	83	
50	kHz	123	149	98	
150	kHz	124	140	108	
1	MHz	131			
3	MHz	144			
10	MHz	172			
15	MHz	187			
100	MHz	322			
1000	MHz	818			
1500	MHz	981			
10	GHz	2408			

Source: Engineering Design Handbook--Electromagnetic Compatibility, DARCOM-P 706-410 (U.S. Army Materiel Command, March 1977). Table 5-10. Shielding effectiveness in electric, magnetic, and plane wave fields of steel shield (1 mil thick) for signal source 165 feet from the shield at 30 hertz to 10 gigahertz

	uency	dB	Electric field, dB	Magnetic field, dB	
30	Hz	85	175	4	
60	Hz	86	171	6	
100	Hz	86	166	10	
500	Hz	86	152	21	
1	kHz	86	146	26	
10	kHz	86	125	46	
50	kHz	87	113	61	
150	kHz	89	105	73	
1	MHz	98			
3	MHz	110			
10	MHz	136			
15	MHz	142			
100	MHz	164			
1000	MHz	287	<u></u>		
1500	MHz	186			
10	CHz	164			

*Source: Engineering Design Handbook--Electromagnetic Compatibility, DARCOM-P 706-410 (U.S. Army Materiel Command, March 1977).

Table 5-11. Shielding effectiveness in electric, magnetic, and plane wave fields of steel shield (50 mils thick) for signal source 165 feet from the shield at 30 hertz to 10 gigahertz*

Freq	uency	Plane wave, dB	Electric field, dB	Magnetic field, dB
		121	211	21
50	112 U #	121	211	30
100	п2 Н7	125	200	46
500	Hz	138	205	73
1	kHz	151	211	91
10	kHz	249	289	210
50	kHz	455	481	430
150	kHz	725	741	709
1	MHz	1465		
3	MHz	2311		
10	MHz	3801		
15	MHz	4140		
100	MHz	5338		
1000	MHz	11,850		
1500	MHz	6547		
10	GHz	5338		

*Source: Engineering Design Handbook--Electromagnetic Compatibility, DARCOM-P 706-410 (U.S. Army Materiel Command, March 1977).

		1	0 kHz-10 mi	ls			
	Magneti	c field	Electric	field	Plane wave		
	Copper	Iron	Copper	Iron	Copper	Iron	
Reflection	44.2	8.0	212.0	174.0	128.0	90.5	
Absorption	3.6	43.5	3.3	43.5	3.3	43.5	
B-factor	-2.6	0	-2.6	0	-2.6	0	
Total loss (dB)	45.2	51.5	212.7	217.5	128.7	134.0	
			60 Hz-ma	gnetic			
	1	mil	10 m	ils	300	mils	
	Copper	Iron	Copper	Iron	Copper	Iron	
Reflection	22.4	-0.9	22.4	-0.9	22.4	-0.9	
Absorption	0.03	0.33	0.26	3.34	7.80	100.0	
B-factor	-22.2	+0.95	-19.2	+0.78	+0.32	0	
Total loss (dB)	0.23	0.38	3.46	3.22	30.52	99.1	
10 k	Hz - 30 mi	ls - magnetic	<u> </u>	l kHz	- 10 mils	- magnetic	
	Copper	Iron		Co	pper <u>I</u>	ron	
Reflection	44.20	8.0		34	.2 0	.9	
Absorption	10.02	130.5		1	.06 13	.70	
B-factor	+0.58	0		-10	.37 +0	.06	
Total loss (dB)	54.80	138.5		24	.89 14.	66	

Table 5-12. Sample calculations of shielding effectiveness for solid metal shield* (sheet 1 of 2)

Table 5-12. Sample calculations of shielding effectiveness for solid metal shield* (sheet 2 of 2)

ļ

	10 mils-copper								
	150 kHz			1 MHz					
	Electric	Plane waves	Magnetic	Electric	Plane waves	Magnetic			
Reflection Absorption B-factor	176.8 12.9 +0.5	117.0 12.9 +0.5	56.0 12.9 +0.5	152.0 33.4 0	108.2 33.4 0	64.2 33.4 0			
Total loss (dB) 190.2	130.4	69.4	185.4	141.6	97.6			

706-410 (U.S. Army Materiel Command, March 1977).

Table 5-13. Peak voltage induced on 10-meter radius loop inside 10-meter radius spherical shield by the high-altitude EMP (by diffusion through the walls only)*

Internal	voltage	induced	in	100p	

Shield thickness, mm	Copper (5.8 x 10 ⁷ mho/m)	Aluminum (3.7 x 10 ⁷ mho/m) µ = 200	Steel (6 x 10 ⁶ mho/m)
0.2	0.34 V	0.85 V0.076 V	
1.0	2.6 mV	6.4 mV1.1 mV	
5.0	21 µV	51 µV 15 µV	

*Source: E. F. Vance, "Electromagnetic Interference Control," <u>IEEE</u> <u>Transactions on Electromagnetic Compatibility</u>, Vol EMC-22 (Institute for Electrical and Electronic Engineers, November 1980).

Table 5-14. Effectiveness of nonsolid shielding materials against low-impedance and plane waves*

						Nominal effectiveness, dB				
Impinging wave	Fo General	rm Detail	Material	Thickness, mils	0.1 MHz	l kHz	10 kHz	85 kHz	i MHz	10 MH 11
Low impedance	Nesh (screening)	2 layers l in. apart	Cu (oxidized)		2	6	18			
		No. 22	Cu					31	43	43
		No. 16	Bronze					18		
		No. 4	Galvan- ized steel		••			10	17	21
Plane	Perforated	45-mil			3040 MHz		9380 MH	<u>Iz</u>		
	BACCL	225 sq in.	A1	20	60		62			
Plane					200 kHz		<u>1 MHz</u>	5	MHz	<u>100 MH</u>
	Mesh	No. 16	A1	diam = 13	34		36	-	-	
	(screening)		-							

*Source: <u>Electromagnetic Compatibility Design Guide for Avionics and Related Ground Support Equipment</u>, NAVAIR AD1115 (U.S. Department of the Navy, Naval Air Systems Command).

For	L			Nominal effectiveness	Op∈n	Air-flow static	Air-flow static
General	Detailed	Material	Thickness, mils	(14 kHz to 1000 MHz), dB Z	in. of water 200 cu ft/min	pressure, in. of water 400 cu ft/min	pr ëss ure,
Hexcell	1/4-in. cell, 1-in. thíck	A 1	3	>90	÷	0.06	0.26
TV shadow	9-mil holes,						
mask	28-mil centers	95% Cù	7	>90	12	>2	
(photo-		52			50	0.2	
etched)		100%	3	>90		0.2	
Lektromesh	40 count	Cu-Ni	7	>90	36	0.4	1 7
	25 count	Cu-Ni	5	78	49	0.2	0.5
	40 count	Cu	3	78	57	0.2	0.5
	25 count	Cu			56	0.2	0.4
Perforated	1/8-in. diam						
sheet	3/16-in. centers	Steel	60	58		0.27	>0.6
	1/4-in. di am , 5/16-in.						
	centers 7/16-in. diam, 5/8-in.	Al	60	48	46		
	centers	Al	37	35	45		
Mesh (screen-	No. 16 16 x 16/sg in.	A1	20 (diam)	55	36		
ing)	No. 22	Cu		65 (14 kHz - 60 MHz)			
-	No. 12	Cu	20 (diam)	50	50		
	No. 16	Bronze		45 (14 kHz - 60 MHz)			
	No. 10	Monel	18 (diam)	40			
	No. 4	Galva- ized	30 (di am)	35	76		
		steel		28 (14 kHz - MHz)			
	No. 2			24	88		

Table 5-15. Effectiveness of nonsolid shielding materials against high-impedance waves*

*Source: R. B. Schults, et al., "Shielding Theory and Practice," Proceedings of the Tri-Service Conference on Electromagnetic Compatibility (IITRI, October 1973). EP 1110-3-2 31 0ec 90

Table 5-16. Comparison of measured and calculated values of shielding effectiveness for No. 22, 15-mil copper screens*

Test type	Frequency, MHz	Measured effectiveness, dB	Calculated effectiveness, dB
Magnetic	0.085	31	29
field	1.000	43	46
(r = 1.75 in.)	10.000	43	49
Plane	0.200	118	124
wave	1.000	106	110
	5.000	100	95
	100.000	80	70
Electric field	0.014	65	65

*Source: W. Jarva, "Shielding Efficiency Calculation Methods for Screening, Waveguide Ventilation Panels, and Other Perforated Electromagnetic Shields," Proceedings of the Seventh Conference on Radio Interference Reduction and Electromagnetic Compatibility (IITRI, November 1961).

Table 5-17. Attenuation factors for reinforcement steel construction*

Bar diameter, cm	Bar spacing, cm	Type of construction	Attenuation decrement, AdB
5.8	30	Single-course	+5
4.3	35	Single-course	o
2.5	45	Single-course	-6
5.8	50	Double-course	+8.5
4.3	35	Double-course	+13
2.5	40	Double-course	+5
*Source: <u>EMP Eng</u> 1977).	gineering Practices	Handbook, NATO Fil	e No. 1460-2 (October

Table 5-18. Application factors for welded wire fabric*

Wire	diamete: mm	r, Spacing, cm	Number of courses	Attenuation increment, dB
	3	20	1	-3
	3	20	2	+4
*Sour 1977	rce: <u>EM</u> I 7).	P Engineering Practic	ces Handbook, NATO File	e No. 1460-2 (October

Electrical conductivity, mho/meter	Quaternary	Quaternary tertiary cretaceous	Jurassic triassic carboniferous	Devonian silurian ordovician cambrian	Cambrian precambrian
1x10 ⁻¹	Shallow playa deposits	Lo a m, clay			
3x10 ⁻²		Chalk	Chalk, trap		
1x10 ⁻²		Alluvium	Alt. basalt, shale		
3x10 ⁻³			Limestone, sandstone	Shale, limestone	
1x10 ⁻³				Sandstone, dolemíte	Sandstone
3×10^{-4} to 1×10^{-4}	Coarse sand and gravel in surface layers				Quartzite, slate, granite, gneiss

Table 5-19. Typical values of conductivity for soils and rock*

5-89

EP 1110-3-7 31 Dec 90

14

Table 5-20. Skin depth (d) and absorption loss (A) for nonmetal materials*

				Water	content (%)		
requer	ncy		1		10	5	0
-	·	δ(m)	A(dB/m)	δ(m)	A(dB/m)	δ(m)	A(dB/m)
l kH	łz	950	0	172	0.1	50	0.2
10 kH	łz	280	0	53	0.2	.16	0.5
100 kH	łz	80	0.1	16	0.5	5	1.7
300 kH	łz	40	0.2	9	0.9	2.8	3.0
1 MH	łz	18	0.5	4.9	1.8	1.5	5.6
3 MH	İz	8.7	1.0	2.7	3.2	0.87	9.9
10 MH	łz	3.5	2.5	1.3	6.7	0.46	18.7
100 MH	Iz	0.56	15.6	0.28	31.2	0.12	68.5

Table 5-21. Electromotive series

Ì

Element	Volts	Ion	Element	Volts	Ion
Lithium	2.9595		Tin	0.136	
Rubidium	2.9259		Lead	0.122	Pb ⁺⁺
Potassium	2.9241		Iron	0.045	Fe ⁺⁺⁺
Strontium	2.92		Hydrogen	0.000	
Barium	2.90		Antimony	-0.10	
Calcium	2.87		Bismuth	-0.226	
Sodium	2.7146		Arsenic	-0.30	
Magnesium	2.40		Copper	-0.344	Cu ⁺⁺
Aluminum	1.70		Oxygen	-0.397	
Beryllium	1.69		Polonium	-0.40	
Uranium	1.40		Copper	-0.470	Cu ⁺
Manganese	1.10		Iodine	-0.5345	
Tellurium	0.827		Tellurium	-0.558	Te ⁺⁺⁺⁺
Zinc	0.7618		Silver	-0.7978	
Chromium	0.557		Mercury	-0.7986	
Sulfur	0.51		Lead	-0.80	Pb ⁺⁺⁺⁺
Gallium	0.50		Palladium	-0.820	
Iron	0.441	Fe ⁺⁺	Platinum	-0.863	
Cadmium	0.401		Bromine	-1.0648	
Indium	0.336		Chlorine	-1.3583	
Thallium	0.330		Gold	-1.360	Au ⁺⁺⁺⁺
Cobalt	0.278		Gold	-1.50	Au ⁺
Nickel	0.231		Fluorine	-1.90	

Table 5-22. Characteristics of conductive gasketing materials*

Material	Chief advantages	Chief limitations
Compressed knitted wire	Most resilient all-metal gas- ket (low flange pressure required). Most points of con- tact. Available in variety of thicknesses and resilien- cies, and in combination with neoprene and silicone.	Not available in sheet (certain in- tricate shapes difficult to make). Must be 0.040 in. or thicker. Subject to compression set.
Brass or beryllium copper with punctured nail holes	Best breakthrough of corros- sion protection films.	Not truly resilient or generally reusable.
Oriented wires in rubber silicone	Combines fluid and RF seal. Can be effective against cor- rosion films if ends of wires are sharp.	Might require wider or thicker size gasket for same effectiveness. Effectiveness declines with mechanical use.
Aluminum screen impregnated with neoprene	Combines fluid and conductive seal. Thinnest gasket. Can be cut to intricate shapes.	Very low resiliency (high flange pressure required).
Soft metals	Cheapest in small sizes.	Cold flows, low resiliency.
Metal over rubber	Takes advantage of the resil- iency of rubber.	Foil cracks or shifts position. Generally low in- sertion loss yield- ing poor RF properties.
Conductive rubber (carbon-filled)	Combines fluid and conductive seal.	Provides moderate insertion loss.
Conductive rubber (silver-filled)	Combines fluid and RF seal. Excellent resilience with low compression set. Reusable. Available in any shape or cross section.	Not as effective as metal in magnetic fields. May require salt spray environmental pro- tection.
Contact fingers	Best suited for sliding con- tact.	Easily damaged. Few points of con- tact.

*Source: MIL-HDBK-335 (USAF), <u>Management and Design Guidance, Electromagnetic</u> <u>Radiation Hardness for Air Launched Ordnance Systems</u> (DOD, 15 January 1981).

This page not used.

Device type	Clamping (or filtering) thresholds	Operate time, sec	Highest burnout- energy thresholds, J	Shunt capacitance P	Typical circuit applications	Possible disadvantages
Varistors MOV SiC	40-1500 V 15-10,000 V	<10 ⁻⁹ <10 ⁻⁹	<10 ³ <10 ⁵	10 ⁻⁹ <10 ⁻⁹	Power, AF Power, term.	High capacitance Poor clamping
Semiconductors Porward diodes (Si Ge)	0.2-0.6 V	<10 ⁻⁹	<10 ¹	<10 ⁻¹²	AP, BP	Low burnout energy
Breakdown diodes (Si, Ce)	2-200 V	<10 ⁻⁹	<10 ²	<10 ⁻⁸	Power, AP	High capacitance
Selenium-diode packages	30-2000 V	<10 ⁻⁹	<10 ⁴	<10 ⁻⁷	Power	High capacitance 🔍
Diode thyristors (p-n-p-n)	25-1800 V	<10 ⁻⁶	<10 ¹	<10 ⁻⁶	AF	Latch-up, di/dt burn- out, slow response, high capacitance
Triggered thyristors (SCRs)	25-1800 V	<10 ⁻⁵	<10 ¹	<10 ⁻⁶	AP, alarm	Latch-up, di/dt burn- out, slow response high capacitance
Spark gaps Carbon blocks	330-800 V	<10 ⁻⁶	<10 ⁴	<10 ⁻¹¹	Term., AF, RF	Power-follow, slow response
Ordinary gas tubes	60-30,000	<10 ⁻⁵	<10 ⁶	<10 ⁻¹¹	Term., AF, RF	Power-follow, slow response, high cost
High-speed gaps	550-20,000	<10 ⁻⁹	<10 ³	<10 ⁻¹¹	Term., AP, RP	Power-follow, high cos
Ordinary arresters	60-30,000 V	<10 ⁻⁵	<10 ³	<10 ⁻¹¹	Power	Slow response, high con
Arresters using high-speed gaps	550-20,000 V	<10 ⁻⁹	<10 ³	<10 ⁻¹¹	Power	High cost

Table 5-24. Comparison of protection devices

5-94

Table 5-25. Galvanic series for selected metals

Corroded end (anodic, or least noble)

Magnesium Magnesium alloys Zinc Aluminum 2S Cadmium Aluminum 17ST Steel or iron Cast iron Chromium-iron (active) Ni-Resist 18-8 Stainless (active) 18-8-3 Stainless (active) Lead-tin solders Lead Tin Nickel (active) Inconel (active)

Brasses Copper Bronzes Copper-nickel alloys Monel Silver solder Nickel (passive) Inconel (passive) Inconel (passive) I8-8 Stainless (passive) I8-8-3 Stainless (passive) Silver Graphite Gold Platinum

Protected end (cathodic, or most noble)

Туре	Advantages	Disadvantages		
Vertical rods	Straightforward design. Easiest to install (parti- cularly around an existing facility). Hardware read- ily available. Can be ex- tended to reach water table.	High impulse impedance. Not useful where large rock formations are near surface. Step voltage on earth sur- face can be excessive under high fault cur- rents or during direct lightning strike.		
Horizontal grid	Minimum surface potential gradient. Straightforward installation if done before construction. Can achieve low resistance contact in areas where rock formations prevent use of vertical rods. Can be combined with verti- cal rods to stabilize resis- tance fluctuations.	Subject to resistance fluctuation with soil drying if vertical rods not used.		
Plates	Can achieve low resistance contact in limited area.	Most difficult to install.		
Horizontal wires	Can achieve low resistance where rock formations pre- vent use of vertical rods. Low impulse impedance. Good RD counterpoise when laid in star pattern.	Subject to resistance fluctuations with soil drying.		
Incidental electrodes (utility pipes, building founda- tions, buried tanks)	Can exhibit very low resis- tance if electrically con- tinuous. Generally lowest initial cost (borne by others).	Little or no control over future alterations.		

Table 5-26. Relative advantages and disadvantages of the principal types of earth electrodes

}

Figure 5-1. Transmission line model of shielding. (Source: ref 5-6)

Figure 5-3. Shield absorption loss nomograph. (Source: ref 5-6)

5-99

Figure 5-4. Nomograph for determining magnetic field reflection loss. (Source: ref 5-6)