Туре	Features	Systems impact		
HEMP	Large extent, high amplitude, broad frequency band, plane wave	Most widely specified threat		
Surface-burst				
Source region	Large amplitude, limited extent includes varying conductivity, currents	Important for systems which are hard to other nuclear effects		
Radiated region	Large amplitude varies inversely with distance	Can supersede HEMP if vertical orientation or low freqs. important		
Air-burst				
Source region	Similar to surface-burst	See surface burst		
Radiated region	Amplitude less than HEMP	Superseded by HEMP		
SGEMP	Very high amplitude and fast rise time	Important for exoatmospheric systems		
MHD-EMP	Very low frequency, low amplitude, large extent	May affect long-land or submarine cables		

Table 2-1. Important features of EMP environments*

*Source: ref 2-1, DNA EMP Course Study Guide, draft prepared for Defense Nuclear Agency (The BDM Corp., April 1983), p I-51.

Туре	Peak amplitude	Timeframe		
HEMP	50 kV/m	Few nanosec to 200 nanosec		
Surface-burst				
Source region	1 MV/m	Few nanosec to 1 microsec		
	10 kV/m	1 microsec to 0.1 sec		
Radiated region	10 kV/m	1 microsec to 100 microsec		
Air-burst				
Source region	Similar to surface- burst	-		
Radiated region	300 V/m at 5 km, typical (highly dependent on HOB	10 nanosec to 5 microsec		
SGEMP	100 kV/m	Few nanosec to 100 nanosec		
MHD-EMP	30 V/km	0.1 sec to 100 sec		

Table 2-2. EMP waveform summary*

*Source: ref 2-1, <u>DNA EMP Course Study Guide</u>, draft prepared for Defense Nuclear Agency (The BDM Corp., April 1983), p I-49.

Equipment	Lead**	Upset level, p-p*** (A)	Damage level, p-p (A)	Max. stress level, p-p (A)
Drimary fraguancy				
supply (PFS-2A)	-24 V	0.4	+	-9
A5 channel bank				
(solid state modem)	-24 V	80		150
	input		150	150
	gain		75	75
Multiplex				
WELMX-1 (tube)	130 V	0.07		1
WELMX-2 (solid-state)	-24 V	0.02	60	60
WEMMX-1 (tube)	130 V	2		2
WEMMX-2 (solid-state)	-24 V			50
Wireline entrance	04 1/1	1		25
link, 3A (ampliller)	-24 VI	1		35
100-A protection				
switch (switching	+24 V	0.2		0.9
unit)				
TM-1 radio-27 V		25	25	
L4 cable system				
Trigger A equalizer	-24 V	8		110
Protection switch	-24 V	16	÷	110
WE TD3 radio	dc power	input 50		
WE TH3 radio	dc power	input 60		
Farinon FM 2000 radio	dc power	input 208	240	
Lenkurt 778A2 radio	dc power	input 35		
Collins MW608D radio	dc power	input 50`		

Table	2-3.	Response	thresholds*
TUDIC	4 5.	Repponde	CHICDHOIGD

*Source: ref 2-4, Prototype HEMP Design Practice Handbook, prepared for Defense Communications Agency (IRT Corp., Contract No. DCA 100-77-C-0040, May 1978). **Point where induced current was measured. ***Induced peak-to-peak (damped sinusoid) on indicated lead. +Data not measured.

Point of entry	Waveform	Voltage	Current	Impedance (ohms)
A.C. power lines, telephone cables	DE**	2 MV	4 kA	500
(above-ground)	DE	2 MV	4 kA	500
External antennas	2-30 MHz DS**	60 kV	1.2 kA	50
Video COAX lines (inner conductor)	1-5 MHz DS5	5 kV	71 A	70
Telephone cable (submarine sheath)	DE	60 kV	1.2 kA	50

Table 2-4. Typical EMP transients and equipment thresholds--EMP threat level*

×+

*Source: ref 2-1, <u>DNA EMP Course Study Guide</u>, draft prepared for Defense Nuclear Agency (The BDM Corp., April 1983), p VI-37.

^{**}DE = double exponential; DS = damped sinusoid.

ļ

Figure 2-1. The Compton process. (Source: ref 2-1)

This page not used.

;

Figure 2-3. Variations in high-altitude EMP peak electric field strength as a function of direction and distance from surface zero. (Source: ref 2-1)

2-28

FREQUENCY (HZ)

... ...

MAGNETIC FIELD

S

120

50

μņ 1110-3-2 Dec 90

Figure 2-5. Qualitative time domain example of HEMP. (Source: ref 2-1)

Figure 2-6. Qualitative frequency domain example of HEMP. (Source: ref 2-1)

31 Dec 60

ļ

Figure 2-7. Surface-burst EMP showing source region and radiated region. (Source: ref 2-1)

Figure 2-8. Overview of surface-burst EMP. (Source: ref 2-1)

2 - 33

- AMPLITUDE TYPICALLY LESS THAN HE IP OUTSIDE SOURCE REGION
- AMPLITUDE VARIES INVERSELY WITH RANGE OUTSIDE SOURCE REGION
- NO STANDARD WAVEFORM
- SYSTEM IMPACT MAY SUPERSEDE HEMP DUE TO - HIGH LOW-FREQUENCY CONTENT (BELOW 100 KHg) - VERTICAL E-FIELD ORIENTATION

- WEAPON GAMMAS SCATTER COMPTON ELECTRONS
- CHARGE SEPARATION PRODUCES RADIAL ELECTRIC FIELD (Er)
- NO SIGNIFICANT CURRENT LOOPS OR MAGNETIC FIELDS

Figure 2-10. Air-burst EMP--source region.

. ...

Figure

Figure 2-12. Three modes of penetration and coupling into shielded enclosures. (Source: ref 2-4)

Figure 2-13. Magnetic shielding effectiveness of an enclosure with solid walls and an enclosure with rebar. (Source: ref 2-5)

Į

Figure 2-14. Magnetic shielding effectiveness of an ideal enclosure and an enclosure with openings. (Source: ref 2-5)

ŝ

Figure 2-15. Ground-based facilities--unintentional antennas. (Source: ref 2-1)

2-39

i.

Figure 2-16. EMP coupling to facility penetrations. (Source: ref 2-1)

Figure 2-17. Two mechanisms by which EMP couples to conductors. (Source: ref 2-1)

¥.

Figure 2-18. Equivalent circuit for a small electric dipole. (Source: ref 2-1)

Figure 2-19. Equivalent circuit for a small loop (magnetic dipole). (Source: ref 2-1)

EP 1110-3-2 31 Dec 90

Figure 2-20. Modeling example--microwave tower and equivalent fat cylindrical monopole. (Source: ref 2-1)

\$

 $\Delta V = I_S Z_T \Delta X$

- ΔV = VOLTAGE DROP ON CENTER CONDUCTOR OF CABLE OF LENGTH ΔX
- $I_{S} = SHEATH CURRENT$
- Z_T = TRANSFER IMPEDANCE PER UNIT LENGTH
- ∆X = INCREMENTAL LENGTH

Figure 2-21. Shielded cables and transfer impedance. (Source: ref 2-1)

EQUIVALENT TRANSMISSION LINE FOR EMP COUPLING

Figure 2-22. Transmission line coupling. (Source: ref 2-1)

-

Figure 2-23. Aerial conductors: effect of conductor length. (Source: ref 2-1)

TIME - Ц Sec

Figure 2-24. Buried conductors: effect of burial depth. (Source: ref 2-1)

EP 1110-3-2 31 Dec 90

Figure 2-25. Ringing.

Figure 2-26. Typical internal signal cable distribution diagram. (Source: ref 2-1)

ų,

Figure 2-27. Intrasite cables. (Source: ref 2-1)

Figure 2-28. EMP system interaction. (Source: ref 2-1)

Figure 2-29. Energy level ranges, in joules, that damage various components. (Source: ref 2-4)

Figure 2-30. Examples of transient upset. (Source: ref 2-4)

Į

Figure 2-31. Range of pulse power damage constants for representative transistors. (Source: ref 2-5)

.

Figure 2-32. Range of pulse power damage constants for representative semiconductors. (Source: ref 2-5)