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Frequency-Hopped Spread Spectrum
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• Spread-spectrum communications allow a large number of
users can share the same spectrum; intended user searches
for particular spreading code

• FCC has allocated 902-928 MHz band for unlicensed, spread-
spectrum use

• Techniques of spectrum spreading: direct-sequence or
frequency-hopping

• Frequency-hopped spread-spectrum allows wideband
spreading at any data rate (➭ low power dissipation), but
needs agile frequency source



Methods of Frequency Synthesis

Digital Synthesizer & D/A Converter
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• Frequency agility limited by loop
settling time

• Signal purity and wide tuning range
compromise VCO design

• DAC linearity sets spectral purity

• Requires anti-alias filter



Frequency-Hopping RF Transmitter

• Single-step I-Q upconversion produces
single-sideband, suppressed-carrier
output in the 902-928 MHz band

• DDFS/DAC need only span 0➝13 MHz:
sign-select at output produces 902-915
MHz, or 915-928 MHz
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• Order of anti-alias filter depends
on highest output frequency
relative to sample rate

• Acceptable image suppression
requires 8b matching in two
channels



Direct Digital Frequency Synthesizer

• DDFS guarantees spurious levels < –72 dBc

• Output frequency resolution is (Sample Rate)/211

✓ ROM contains only quarter-wave data

✓ SIN and COS generated from same ROM by phase-shift of argument

✓ ROM stores difference between amplitude and phase (saves 2 bits)

✓ One large table is replaced by small coarse and fine tables

➮ ROM is 32× smaller

4 Nicholas & Samueli,
IEEE JSSC, Dec 1991
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35 mW at 50 MHz, 3 V!



Principle of Low-Power, High-Speed DAC

• Binary division by successive
charge redistribution

• Equal-sized capacitors required

• Three-phase clock for proper
charge-transfer

¼VFS

½VFS

VFS

4 Wang, Temes, Law,
IEEE JSSC, Dec 1989

• Pipelined operation produces one
conversion per clock cycle

• Linearity limited by:
☞ DAC capacitor mismatch
☞ Stray capacitance in DAC cells
☞ Signal-dependent charge injection after redistribution
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DAC Implementation
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• Differential implementation using two charge-
redistribution pipelines

• Output buffer must be at least as linear as
DAC — differential buffer degenerated by
polysilicon resistor, and driven in closed-loop

5 mW at 50MHz,3 V!
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What Sets DAC Power Dissipation?

Sources of Power Dissipation
• No static power dissipation in DAC core, but small dynamic CV2f dissipation

• Clock buffers driving DAC switches dissipate most power

➭ Power dissipation decreases as DAC cells are scaled down

• 0.5 pF capacitors (400 sq-µm area) match to within 0.1% rms

• Switch-induced noise with 0.5 pF capacitors accumulating in DAC ª
170 µV rms; output buffer noise ª 110 µV rms ➭ LSB size > 0.5 mV

• RC time constant for settling to 10 b at 50 MHz sets width of switch
FET ➭ lower limit on nonlinear charge injection

Lower Limits to Scaling

4 Pelgrom, et al., IEEE JSSC, Oct 1989



1-µm CMOS with double-metal, linear capacitor

2.9 × 4.9 mm die size



Low-Frequency Synthesis

✓ Noise floor set by quantization noise
— measure 2 dB higher than theoretical limit

✓ Spurious level as predicted
— set by capacitor mismatch 55 60 65 70
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High-Frequency Synthesis

• Spurious levels grow at
high frequencies due to
1fF inter-cell stray
capacitance

• No slew-rate limiting or
output glitch at 50 MHz

• On-chip digital circuits
do not contaminate
output spectrum!



Frequency Agility
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• Output instantly switches from one frequency to another
(after 8 clock cycle latency through DDFS/DAC)

• Anti-alias filter will limit the settling response in system



Conclusions

✓ First demonstration of monolithic CMOS 10b DDFS/DAC

✓ Low-power design leads to 35 mW DDFS, and 5 mW 10b
DAC core, both operating at 50 MHz from 3-V

✓ Spectral purity from untrimmed parts is –62 dBc at low
frequencies, –57 dBc at 1/3 Sample Rate

✓ Low-power circuits ➭ small interaction between analog and
digital parts of the chip

✓ Direct digital frequency synthesis is a viable solution for an
agile sinewave source in battery-powered wireless
transceivers


